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SMALL DEFORMATIONS SUPERPOSED ON LARGE DEFORMATIONS

IN MATERIALS WITH FADING MEI'ORYc

by A. C. Pipkin** and R. S. Rivlin***

1, Introduction

The non-linear stress-deformation relation for materials

with memory has been discussed by Green and Rivlin and

Green, Rivlin and Spencer [2]. In the present paper we derive

the restricted form applicable to small dynamic deformations

superposed on large static deformations, Although this can be

done-by making an appropriate linearization of the final result

nf the non-linear theory, we avoid some of the complexities of

that theory by introducing the linearization at an earlier stage.

2he results obtained will apply in particular to problems of wave

propagation in finitely deformed viscoelastic bodies*

It is assumed that the stress depends on the deformation

'history) and that the properties of the material do not change

with time. The stress components are then hereditary functionals

of the deformation gradients. Because rigid rotation of a deform-

ed body has no effect on stress, other than to rotate the stress

field, and since the stress-deformation relation must embody

this fact, the relation is of a certain restricted form. This

form was derived by Green and Rivlin [1] by using invariant-

The results presented in this paper were obtained in the
course of research sponsored by the Office of Naval Research
under Contract Nonr 562(10) with Brown University.

* Assistant Professor of Applied Mathematics, Brown Unitrersity.

' Professor of Applied Mathematics ) Brown University.

' * Numbers in square brackets refer to the References at the
end of this paper,
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theoretic methods, and subsequently Noll (3) derived an equivalent

form. Nollts derivation is simpler than that of Green and Rivlin

in that it does not make use of invariant theory, but the form

he derives is not suitable for the purposes of the present paper.

In Section 3 we take the opportunity to present a derivation

which combines some of the simplicity of Noll's method with the

explicitness of Green and Rivlin's result.

When the deformation consists of an infinitesimal dis-

placement field superimposed on a finite deformation, the stress

deformation relation can be linearized with respect to the

gradients of the infinitesimal displacement field (Section )g)*

In a material with fading memory, if the finite deformation is

held fixed long enough so that the original deforming process

has no further effect, the non-linear functionals specifying

the stress can be expressed in terms of non-linear functions

and linear functionals (Sections 5 and 6) .

The functions appearing in the linearized formulation

are subject to restrictions in form if the material has any

symmetries in its undeformed state (Section 7). In the case of

isotropic materials(Section 8), these restrictions are such

that the constitutive equation can be brought into a simpler

form involving the classical strain tensor (Section 9).
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2. Materials with memory and hereditary funtionals

Consider a body in its undeformed state. Let the

coordinates of a generic particle be X.9 in a fixed Cartesian

coordinate system x. If the body is deformed as time progresses,

then the particle which was originally at Xi moves to a new

position xi at time ty and the deformation may be specified by

giving xi as a function of X and t:

Xi = Xi(Xpt) • (2.1)

The derivatives axi/aXpI called deformation gradients, may be used

as measures of the deformation in the neighborhood of the particle

Xp.

Suppose that the stress at a given particle depends on

the deformation gradients at that particle, not only at the

instant t considered but also at all, previous times* The stress

components dij at time t are then functionals of the deformation

gradients at the particle considered. To express this ideal we

write
0

di(t) = fi[dx (t -O)/aXq; t] . (2.2)

Explicit dependence of the functionals on t indicates

that the intrinsic properties of the material may change as time

progresses, whether the material is subjected to a deformation

or not. This possibility will immediately be rejected, however,

for we assume that the material has the following property$ if

two deformation histories differ only by a time shift, then

the corresponding stress histories differ only by that same time

shift. It is easy to see, and correspondingly easy to show
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rigorously, that this assumption implies that the functionals

cannot depend on t explicitly* Thus in place of Eq. (2.2) we

write

00

(t rf ax (t - -r)/ax ) (2.3)

The f unctionals are then said to be heeiay
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3. Rotation of the Dhysical system

Not every relation of the form (2.3) is physically

meaningful. When an arbitrary rigid rotation is superimposed on

a given deformation history, the stress field undergoes an equal

rigid rotation. The form of the constitutive equation must be

such that this condition is satisfied.

let 'ibe a deformation history obtained by superimposing

a rigid rotation on the deformation xi(t), so that

Ri(xp't) = aij(t)xj(Xpt) . (3.1)

Here the coefficients a j(t) must satisfy the orthogonality condi-

tions

aik(t)ajk(t) = aki(t)akj(t) = ij, I aij(t) I= 1. (3.2)

From Eq. (3.1), the deformation gradients for the new deformation

are

i(t)/aXp = a ij(t).xt)/axp (3.3)

Letting Uij(t) denote the stress components associated with the

deformation 71 (t), Eq. (2.3) implies that
00

(t)= fi C3p(t o)/aX (3,4)

The condition to be satisfied is that the components

FiJ (t) are related to the components di (t) by the rotation aii(t)

Thus,

;ij(t) = aik(t)aj0Ct)dkO,(t) . (3.5)
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By using Eqs. (2.3) and (3.4) in Eq. (3.5), and making use of

Eqs. (3.2) and (3.3), we obtain

00

f [ax (t ' (3.6)'

a Wa 
00

= aki(t)a j(t)fkjapr(t - 'r)axr(t r )/aX J.
'r=0

The functionals fiJ must be of =-h form that. q-(3.6) is satisfied

no matter what the choice of aij(t) may be, subject to the

restrictions (3.2).

We may in particular let aij(t) be the J-component of

vector number i in an orthogonal system, formed from the three

vectors 8x /aXl axj/X 2 9 and 8x /aX3 by the Schmidt orthogonali-

zation process. In the first step of this process, a1j(t) is

constructed by dividing 8x3(t)/aX1 by its length. We thus

obtain

alj(t) = [Gl(t)] 2 ax3 (t)/aX1 • (3.7)

Here G11 (t) is one of the set of inner products Gp4t)) called

strain components, which are defined by

Oxi(t) axi(t)
Gpq(t) =- (38)

aX p aXq

Next, we construct the unit vector in the plane of axj/OX1

and ax 3/aX25 perpendicular to 8xj/aX1 and forming a positive

inner product with ax /ax . Using the notation Aq(t) for the

cofactor of G (t) in the determinant G(t) = lG (t), this
pq pq

vector may be written
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a2j~t = 1l(t)A33(t)] Gl 2(t)Bxj(t)/8x1

+ G11(t)Ox3(t)/X 2J e (3.9)

Finally, a3 j(t) is taken to be the unit vector perpendicular to

8xj/OX 1  and axj/ax2 whose inner product with 8xj/0X3 is

positive. Thus,

-I2  Ox (t)
a3 W(t) [a33 (t)G(t)] 2 13(t) 2[A

ax1(t) ax(t)
+ A 2 3 (t) x + ( gX3 . (3.10)

We note that G11 (t), A 33(t), and G(t) are positive in any

deformation possible in a real material. Equati6ns (3.7), (3.9)

and (3.10) may be abbreviated as

aij( t) = Cik(t)axj(t)/aXk , (3.11)

where the coefficients Cik(t) are functions of the strain

components G pq(t).

Since the coefficients aij t) constructed in the manner

described above satisfy the restrictions (3.2), Eq. (3.6) must

be satisfied for this choice of aij(t). Thus, if Eq. (3.11) is

used in Eq. (3.6), and Eq. (3.8) is used to simplify the expres-

sion for the functional argument, we obtain

00

• ' x X(t) ax/(t) o

= Ckm(t) C t.) fkt[Cpr (t " )Grq(t " )J

x (t) x(t) 00
-xM  -8'F F mnGpq(t- )) , (say).

n pq(--0
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The second member of this equality is of the form shown in the

last member because the coefficients Cia(t) are functions of

the strain components Gpq(t).

It is thus seen that if Eq. (3.6) is satisfied, the

functionals f1 J can be written in the form (3.12). It is easy

to show that, conversely, if the functionals are of the form

(3.12), then Eq. (3.6) is satisfied for all orthogonal trans-

formations. The constitutive equation is therefore of the

restricted form
8x i (t) axJ(t) co

d ij(t) = k  i Fk Gpq(t - ')] • (3.13)
=0

We note that since the stress tensor is symmetric, Fk= Ftk *



011-66 9

4 Small deformations superimposed an large deformations

Consider a deformation obtained by superimposing a dis-

placement field sui(Xpft) on the basic deformation xi = x i(X pt):

iixi(Xp,t) = xi(Xp,t) + sui(Xp,t). (1+.*1)

The stress components corresponding to this deformation are, from

Eq, (3.13), axt) x(t) 00
d iJ(t) = -Ow- 8 F 4 [G pq (t'-)] (1+.2)

=O

where the strain components Gp (t) are those obtained by replacing
* pq

xi(t) by xi(t) in Eq. (3.8). We wish to obtain the linearized

form of Eq. (4.2), valid for small enough values of e .

By using Eq. (4.1) and neglecting terms of order e 2 we

obtain

8x(t) x1(t) axt) ex1Ct) aui(t) axM(t)
8Xk -- a xk ax + It ax k  ax -

+ axi(t) au1 (t) (43)
aXk axt

The strain components G* (t) appropriate to the new history can
pq

be found by setting i=j in Eq. (4.3). Thus,

Gkt(t) = Gkt(t) + 2sEk (t) . (4.4)

Here the functions Gkt(t) are the strain components for the basic

deformation xi(t), and the functions Ek (t) are defined by

E8u(t) .x (t) 8x(t) 8ui(t)
2Ek'Vt) 8Xk aXk 8X "(



C1-66 10

We now assume that the functional Fkkis particularly

dependent on the value of G* (t-) and its time derivatives
pq

at ' = 0 and is a continuous functional of G pq(t-T) over the

range 0 < T < 00. Using the notation

G*() Gpq(t) I Gpq =11 pqt)dl 46

we suppose that Fkt may be expressed as the sum of

a number of terms, each of which is the product of a differen

tiable function fv) say, of G (A )  (j=0,1,2,,..), and a continu-
* pq

ous functional Ov) say, of Gpq(t- over the range 0 < T <co 
Then,

*00 ,00
Fkt[Gpq (t- )] = Z f (G* ( G))¢v[G* (t-T) ] (4.7)

pq v vpq. v pq'p=0

Using Taylor's theorem, we have, with (I+o.+) and the neglect of

terms of order higher than the first in e 9

fv(G*4)) = f (G( j ) ) + 2e Z pq fv/8G* 1 = (4.8)v pq v pq L p=0

In (4.8) we use the notation

E ( ) =Ep(t) Ep= d (t)/d# . (4.9)Pq pq pq pq

By using the integral representation for continuous

functionals, it is seen that neglecting terms of order e2) the

functional Dv may be expressed in the form

T =0 00 T=0

+ e 0(V) [G ()f TI ] (t-T)dW. (1+110)
o s pr
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By using (4.8) and (4.10) in (4.7), and again neglecting

terms of order e2, we see that Fkt is expressible in the form

*00 00
Fi[Gpq (t- )) = Fa,[Gpq(t- )]

'1=0 =

00

+s Z A 5sGpqpq ]rsV r =0

00
+ Yfr (G - i G(  t ro 11Dapq JE'st

+i-e K~rs[(G ; pq, ]rs (t-)d. (4.11)

0 p

The constitutive equation for small deformations super-

imposed on large deformations is now obtained by using Eqs. (4.3)

and (4.11) in (4.2), again neglecting terms of order e2. Since

e was introduced only to facilitate the linearization process,

it will be omitted after this step; i.e. we take 8=l with the

stipulation that the displacement gradients and their derivatives

are small. The linearized equation is then

(t) 8x(t) 8x(t) +ui(t) 8xl(t)
Jt aXk ax, aXk aXt

Ox.(t) au (t) Co
+ Xk - X ]Fkt[Gpq(t' )]

k7=0

Ox (t) ax..(t) C+x~t -xit 1 1 1E (v) (G co.-0 3(l)]E( v ) (t)
+ Xk  Z Ak4rs pq pq rs

v 17=0

000
ax (t) ax (t) 00 o+ IX j K0 trs(apq(t' fG( O Pq"]Est)d

0 Xo0(4=12)

Since the stress tensor is symmetric, then FkFkI
60 _(v) vK Since E~v)=E(v)

Aktrs-krs, and Fa rs rs - 9 there is no

loss of generality in taking 4k(rs=i -Ar and =KrsmKir as well*
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5. Materials with fading memory

If the basic deformation xi(Xppt) were time-independentf-(v)_
the functionals Fiji Aijgs and jkt in Eq. (4.12) would reducei~kL
to ordinary functions of the constant strain components Gpqe

The basic deformation is) of coursep necessarily time-dependent,

because it must involve a transition from the undeformed state

to whatever fixed state is contemplated. However, the same

simplification is achieved if a material with fading memory is

held in a fixed state of deformation for so long that the original

deforming process is forgotten.

let the basic deformation xi(Xpt) in Eq. ()+.I) be one

in which the body remains in a fixed state xi(Xp ) after time

t=Oi i.e.

xi(Xpt) = xi(Xp), t > 0. (5.1)

Using the notation Gpq(t) for the strain historiesp as before,

let Gpq denote the constant strains associated with the fixed

deformation xi(Xp). Since Gpq (t) = Gpq for t>O, then the

derivatives GO (jG" 0) in Eq. (4.12) all vanish.
pq

We assume that after a sufficient amount of time has

elapsed, the deformation history before t=O has an arbitrarily

small effect on the stress. This assumption requires that the

following condition be satisfied by the functionals Fkt which

appear in Eq. (4.2):
00 00

lim [FijCG p(t.-') + 2Epq (t-)]) Fij[Gpq +2Epq(t. O,
t __> 00 o 0 =O (5.2)

As a particular case of Eq. (5.2), we have
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00 00

lim Fij[Gpq(t-] = Fij [Gpq] = Fij(Gpq), 6ay) . (5.3)
t _->o r =U =0

As indicated, the functionals reduce to functions of the constant

values Gpq in this cases By considering the linearized form of

Eq. (5.2), i.e. the form corresponding to Eq. (4.12), it can be

shown that the functionals A(v) and Kijkz also reduce to

functions of Gpq at large times.

When the deformation has been held fixed long enough that

the history before t=O has no perceptible effect, the functionals

Fi ijkl and KiJkt may be replaced by their limiting forms7

which are functions. The constitutive equation (4.12) then

assumes the form

[x x +t) ax= [(t+ )

(Xk 8Xt +aX 8 ]Fk(apq)

8x x A(V) (G E ()

+Xk  kzs pq rs

00

+ J Y(rs( pq'd)Ers(t') (5*)
0

Here xi denotes the basic steady deformation, with associated

strain components Gpqe

In passing, we note that if ui is steady, then the combina-

tion xi+Ui can be regarded as a new steady deformation with no

unsteady part superimposed. The stress given by Eq. (5.4) must

be the same7 whichever way the deformation is regarded. From

this consideration, we find after some manipulation that the

following relation must be satisfied:



C1A6 A(O) (G )+ J0 Kijkt(Gp))d = 2 * 124.

ijk' pq f qa~' Gkt
0

In the remainder of' this paper we will consider only

those materials and deformations for which Eq., (524.) is valid.
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6. An alternative approach to materials with fadin& memory

In Sections 2 to 5 we have developed the constitutive

equation for small dynamic deformations superimposed on large

steady deformations in materials with fading memory* This was

done by specializing the constitutive equation for materials

with an unspecified type of memory* An alternative approach is

possible,, in which it is assumed initially that the deformation

consists of a steady deformation xi(Xp ) with a displacement field

ui(Xp)t) superimposed on it. It is then assumed that the stress

components depend on the deformation gradientfxp/Xq and the

history of the displacement gradients Oup (t)/aXq' so that

00
di(t) = fij[oup(t-,)/aXq a 8x/aX q) (6.1)

'T=0

To find the restricted forms of fij which will satisfy

the rotation invariance principle, we consider a new total

deformation xi(t) =2 + Ui(t) related to the original total

deformation xi(t) = i + ui(t) by a rigid rotation, i.e. by

Eq. (3.1). The stress components corresponding to the new

deformation are given by

d-ij(t) = fij[/8p(t-/axq ; Xq . (6,2)

The new stress components jij(t) must then be related to the

components dli(t) by the transformation (3.5). By using Eqs.

(6.1) and (6.2) in Eq. (3.5), and making use of Eq. (3.2), we

obtain
00

fij[OUp (t-,)/OXq a xp/O Xq]
,r=O 00

- aki(t)at3 (t)fk[8Up(t-i)/8Xq i ip/x q I
'T =0 (6.3)
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At this point, neither Xi nor Ui(t) have been defined.

Only their sum, Ri(t), has been defined by (3.1). The new total

deformation S(t) can be decomposed into a steady part and an

unsteady part in either of two essentially different ways:

(i) the steady part Ri may be regarded as identical with the

steady part xi of the original deformation, in which case the

entire rigid motion is included in the-unsteady part Ui(t),

(ii) the new steady part Ri may be related to xi by a time-

independent rigid rotation, with Ui(t) related to ui(t) by the

same rotation.

In case (i), we take xi=Xi* The displacement field ii(t)

is then defined by

Ci(t) = Ri(t) - i = aij(t)xj(t) " xi " (6.')

Equation (6.3) then becomes

00

fii[aup (t-.')/axq ;x/aXqJ
'r=0

aki(t)a 4U(t)fk[apr (t-.)exr (t r)/axq ax/aX q e Oxp/XqS.

(6,5)

Dy constructing the coefficients aij(t) from the gradients

6xi(t)/aXjj as in Sectioh 3, ire find that fij must be expressible

in the form

8xi(t) ax (t) 0p t ) . 8x / X 1] (6.6)
- xk =k O pq )q

'r =
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When Eq. (6.6) is used in the basic invariance require-

ment (6.3), and Eqs. (3.1) and (3.2) are used to simplify the

resulting expression, it is found that the functionals Fij

must satisfy the condition

Fij[Gpq(t) x/6 = Fij[pq(t-.) 8 /6Xq] , (6.7)
'V=O or =0

where the strain components Upq(t) are defined by replacing

xi(t) by Ri(t) in Eq. (3.8). By making use of Eqs. (3.1) and

(3.2), it is found that

Upq(t) = G pq(t) . (6.8)

We now consider case (ii). The coefficients aij in

Eqs. (3.1) and (3.2) are taken to be constants, and the new

steady deformation x. is defined by

xi = aijxj" (6.9)

By using Eqs. (6.8) and (6.9) in Eq. (6.7), we find that the

functionals Fij must be of such form that

00 CO

F[Gpq(t-'r) ; ox/aXq] = F [Gpq (t-) i apraxr/8Xq] • (6.10)

'r =0 r =0

By constructing the coefficients aij from the steady deformation

gradients 8x1,/8Xq in the manner described in Section 31 we find

that the functionals Fij depend on the gradients 8X1 /aXq only

through the strain components Gpq defined in terms of them. By

using this result in Eq. (6,6), and the result so obtained in

Eq. (6.1), we obtain finally
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axi(t) 8x (t) 00

ij(t) = X -Xz- Fkj[Gpq(t-17) J Gpq] (6.11)
'V=0

The displacement gradients 3uit)/OX enter into Eq.(6.11)

through 8xi(t)/8Xj and Gpq (t-,r).In general, the displacements

ui(t-.v) cannot be small throughout the entire history of deforma-

tion) since x + ui(t- ) = X for r sufficiently large. Thus,

before Eq. (6.11) can be linearized with respect to the dis-place-

,ment gradients$ it is necessary to Lssume that the material has a

fadirt memory and that enough time has elapsed so that the unde-

formed state has been forgotten. With these assumptions,

Eq. (6.11) can be linearized, and the form obtained is again

given by Eq. (5.4).
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7. Symmetry of the material

Certain restrictions must be placed on the functions

Fij , A(V) and Kijkt in (5.4)1 if the constitutive equation is

to describe a material which has some symmetry in its undeformed

state. Iet 7 be a fixed rectangular Cartesian coordinate system,

related to the system x by an orthogonal transformation, so that

xi = Sijxj ' Xi = SijXj ' i(t) = sijuj(t), (7.1)

where SikSjk = skiSkj ij (7.2)

Defining Gpq t), and Epq t) as in Eqs. (3.8),- (4.5), and

(4.9) respectively but in terms of the new coordinates xi and

X., and making use of Eqs. (7.1) and (7.2), we obtain

Gi Sl.j(k '  iJ(t) = S (v)(t). (7.3)
Gij siksjt~kI, ij =ik itk.Xt

The components Fij(t) of stress, measured with respect to the

system x, are given by

Tij(t) = Siks k(t) . (7.4)

If , = us1i,11 is a symmetry transformation for the
material, then Eq. (5.4) remains valid if all quantities are

measured with respect to the system x instead of the system x.

By using Eq. (5.4) and the corresponding expression for dij(t)

to eliminate dii(t) and Fij(t) from Eq. (7.4), a relation involv-

ing Fii i k , andA(V) is obtained. From that relation and

Eqs. (7.1) to (7.3), it can be shown after some manipulation

that the following conditions must be satisfied (for details
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of a similar manipulation in the isotropic case, see (1) or [2]):

Fj(pq) = SikSjFkIF(Gpq) (7.)

iJrs (pq SikSj r s (Gpq)E r s (t) , (7.6)

K jirs(t-r) = SikStKktrs (Gpqm)E rs(t-m). (7.7)

These relations must be satisfied identically for each transforma-

tion s belonging to the group of symmetries of the material. In

the following section we will consider the consequences of

Eqs. (7.5) to (7.7) in the case of isotropic materials.



Clil66 21

8. Isotrooic materials

The symmetry group for an isotropic material is either

the fll orthogonal group or the proper orthogonal group,

depending on whether the material has a center of symmetry or not.

Presence or absence of a center of symmetry is irrelevant in the

present context, however, because Eqs. (7.5) to (7.7) are satis-

fied identically if the transformation is the central inversion,

i.e. if aij =- ij.

Rivlin and Ericksen [41 have studied the implications of

an equation of the form (7.5). They have shown that if the

functions Fij are single-valued functions of the variables Gpq)

and if Eq. (7.5) is satisfied for every orthogonal transformation

st then the matrix F = 11F i can be expressed in terms of thesi

matrix G = 11Gi.Ji in the form

F= 2 F (8.1)

Here I is the unit matrix 16 1H1@ The scalar coefficients FopFl an5.
ij

F2 are single-valued functions of three basic orthogonal invari-

ants of Q,

tr Gii, tr G2 = G Gj 'j tr G3 = GijGjkGi . (8.2)

If, in (7.5), Fij is a polynomial* in its arguments, then F may

be expressed in the form (8.1), Aith Fog F1 , and F2 expressible

as polynomials in the invariants (32).

*We note that if Fi is a continuous function of Gpq, it may be
expressed as a polynomial as closely as desired in any closed

domain*
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The limitations on KijrsErs(t-) implied by (7.7) may

be obtained in more explicit form by considerations of the type

used by Rivlin and Ericksen (1 and by Rivlin [5]. We use the

notation

Kjj(GpqErs) = Kijrs(Gpq)Ers , (8.3)

the dependence of Ers on t-r being understood. Then, Eq. (7.7)

may be written in the form

Kij(Gpqfrs) = SikSAKkt(GpqErs) . (8.+)

If we assume that KiJr, is a polynomial in Gpq' so that Kij is

a polynomial in Gpq and Ers linear in Ers it follows (Rivlin

[5]) that K 11K.,11 may be expressed in the form

K =KoE + Kj(EG + E) + K2(EG 2 + G2 E)

2 NM
+ Z K(tr EG )GM  (8.5)
MN=O o "

The coefficients Ko, K9, X2 and KM are polynomials in the

invariants (8.2)) and functions of r . If these coefficients

are regarded as single-valued functions rather than polynomials,

Eq. (8.+) is still satisfied.

Since Eq. (7.6) is of the same form as Eq. (7.7)l its

implications are analogous to those of (7.7). We use the

notation

A(v)(G E (v) A (v) (G )E ()(t) (8.6)
ij pq' rs ijrs pq rs

By an argument similar to that used in deriving (8.5), we find

that A(v) = 11A(v)I1 can be expressed in the form
_ ij
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A =v AVME (v) + A (v) (E (v)GGE (V)) + A (V)(E(V) G2+2(;%)W
0 1 O _Olw 2 w o

+ E AM) (t= E(v)G)GM. (8.7)MjN=0

T(v) A(v) A(v) A(v)The coefficients A 0 A 1 and are polynomials in

the invariants (8.2). Again1 the invariance requirements are

still satisfied if these coefficients are regarded as single-

valued functions rather than polynomials.

When Eq. (8.5) is used in (8.3), (8.7) is used in (8.6),

and (8.1), (8.3), and (8.6) are then used in Eq. (5.4)p the

constitutive equation for isotropic materials is obtained. It

may be kritten as

ij(t)

S x ui(t) xx a x 8u(t)
ax ax +x OX .ItAFobkt + F Gk + F %G GkX k 8Xz t Xk 8X2. 1 k F 2 kp p-]

Ox Ox Av) Z + (v)
"i [A R)0kp kq + A1  (bkpG q + tqGkap )

2A k(bG rq t+* k rq~ ~p)

* 2 (v)(GM) q (v)
M(N=O 4( )p]E (t)

+ a k [Ko (r)bkp,. + K1 )(bkpGq + kq akp)O Xk OX& p

0

+ K2 ()(bkpGtrGrq + btqGOGrp)

2N
+ E KM( )CGM)k(GN) pq]E (t )d'. (8.8)M9N=O pq

Dependence of the scalar coefficients on t' GN (N1923) is

understood.
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9. An alternative form for the constitutive eguation for isotronicerials

Equation (8.8) can be written in a slightly simpler form.

As the first step, the displacement gradients are written in

terms of spatial derivatives, thus

aui(t) aui(t) ax
ax = .(9.1)

Here the derivatives axk/OXJ are deformation gradients for the

basic steady deformation. By using (9.1) in the definition (4.5)

of Epq$ we obtain

Epq (t) = X ax7 eij(t) (9.2)

where eij is the classical strain tensor defined by

auipt) au1 (t)

eij(t) = x1  + i  . (9.3)

The time-derivatives 00 are, from (9.2),
pq

()) xi 21 ((t)
pq t axp ax q ij

where
e(1)(t) = 4'eij(t)/dtiL (9.5)
iJ i

In the definition (4.09) of Ep) and now in Eq. (9.5), the

pqdifferentiation d/dt holds X p fixed.* Thus

d L+ at J1 *(9,6)dt at Ct axi

When this expression is used in (9.5), terms arise which are

quadratic in the displacements. These will be neglected. Thus,
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in (9.5), d/dt may be regarded as the partial derivative with

xi held fixed.

Next1 consider the tensor g = 11gijll defined by

ax OX

By using this definition with Eqs. (9.2), (9,4), and the defini-

tion (3.8) of Gpql we obtain the relations

tr G N = tr gN , tr(E(V)GN tr(e (V) gN+l)1  (9.8)

ax ax N N+J.aXk = G (9.9)ak axi kt (v))Nj

ax ' .(E~(v) N+l )(9.10)
av) GN) = ge~v ±

ax au (t) ax x au (t)+ X B'+ 3' k T X2 ](GN~k

aXk 7XIt axk ak OWk

= [.ik jt + uik(t)6j + uj ,(t)bik(N+l)k. (9.11)

In the last equation, the notation aui/0x3 u has been used.

By making use of Eqs. (9.8) to (9.11), the constitutive

equation (8.8) can be written in the form

(Sij(t) = [ikbj0+ Uik(t)bjt+ ujz(t)bik](Fog +Flg 2 + F2g3 )kt

+ z[x(V)ge(V)g + A(V)(ge(V)g2 + g2e(V)g)
v0

(v)(ge (v) g3 + g3e(V)g) + 2 (v) tr(e(V)gN+I, M+l

00 FI"M)N=0
+ f[K 0 ( )geg + Kl( )[geg 2+g2eg) + K2(;)(geg3+g3eg)

0
2 N+lM+l

+ Z 1IN(rtr(u )9i31jd*
11INFO (9.12)
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The time-dependence of e and e (V)is understood. According to

(9.8), the scalar coefficients in (9.12) may be regarded as

functions of tv N (N=1123) rather than of tr GN (N=1,213).

The integration with respect to time in (9.12) is

integration with Xp held fixed. However, with neglect of terms

quadratic in the displacements, it may be regarded as an inte-

gration holding xi fixed.

3By using the Cayley-Hamilton theorem) g may be expressed

as a linear combination of , gj and I with coefficients which

are polynomials in the invariants tr gN (N=1,23). Therefore

we may write

F g+ F1 2 + 3F= + + f 2
2 ' (9.13)

where foI fl, and f2 are functions of tr gN (1T=192,3).

Denoting the integrand in Eq. (9.12) by kij and its matrix

by k = Ilk i, we see that k is a synmetric matrix polynomial in

the symmetric matrices g and et linear in e. The scalar

coefficients are, of course, not necessarily polynomials.

According to Rivlin [5], k may therefore be expressed in a form

similar to (8.5). In that expression we replace K by k, G by g

and E by e to get the desired result. Similarly, the summand in

(9.12) can be expressed in a form analogous to Eq. (8.7), by

replacing G by g and E by e in the latter expression. These

results, taken with Eq.(9.13), imply that Eq. (9.12) can be

reduced to the following form:
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d[(t) 6 b uk(t)& j.t+ uj ,t(t)bk][If I + f + 2

+ Z a~v)b -av( jbtik)

+ a (V) (b~
2 (v) M ejtgNgv)

+ 2 a~(,,) M) (g N .te (t)
MPN=O PW rw

00

+ k2 (r)C(b jg ejgig

2 m N

1.11N=O VN0 j- kt

The scalar coef'ficients are functions of tr gN (N=1,2,3)e
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